336 research outputs found

    Improving Response Rates to EGFR-Targeted Therapies for Head and Neck Squamous Cell Carcinoma: Candidate Predictive Biomarkers and Combination Treatment with Src Inhibitors

    Get PDF
    The epidermal growth factor receptor- (EGFR-) directed antibody, cetuximab, was FDA-approved for the treatment of squamous cell carcinoma of the head and neck (SCCHN) in 2006. Additional EGFR-targeting agents in clinical development for SCCHN include other EGFR-directed antibodies, tyrosine kinase inhibitors and antisense DNA. Although the majority of SCCHN overexpress EGFR, SCCHN clinical responses to EGFR-targeting agents have been modest. Molecular predictors for SCCHN response to EGFR-targeted therapies have not been identified. However, molecular correlate studies in lung cancer and colon cancer, which have EGFR-targeted therapeutics FDA-approved for treatment, may provide insights. We describe candidate predictive markers for SCCHN response to EGFR-targeted therapies and their prevalence in SCCHN. Clinical response will likely be improved by targeted therapy combination treatments. Src family kinases mediate EGFR-dependent and -independent tumor progression pathways in many cancers including SCCHN. Several Src-targeting agents are in clinical development for solid malignancies. Molecular correlate studies for Src-targeting therapies are few and biomarkers correlated with patient response are limited. Identifying SCCHN patients who will respond to combined EGFR- and Src-targeting will require further characterization of molecular correlates. We discuss rationale for EGFR and Src co-targeting for SCCHN treatment and describe recent clinical trials implementing combined Src- and EGFR-targeted therapeutics

    Genomic and Transcriptomic Alterations Associated with STAT3 Activation in Head and Neck Cancer.

    Get PDF
    BackgroundHyperactivation of STAT3 via constitutive phosphorylation of tyrosine 705 (Y705) is common in most human cancers, including head and neck squamous carcinoma (HNSCC). STAT3 is rarely mutated in cancer and the (epi)genetic alterations that lead to STAT3 activation are incompletely understood. Here we used an unbiased approach to identify genomic and epigenomic changes associated with pSTAT3(Y705) expression using data generated by The Cancer Genome Atlas (TCGA).Methods and findingsMutation, mRNA expression, promoter methylation, and copy number alteration data were extracted from TCGA and examined in the context of pSTAT3(Y705) protein expression. mRNA expression levels of 1279 genes were found to be associated with pSTAT3(705) expression. Association of pSTAT3(Y705) expression with caspase-8 mRNA expression was validated by immunoblot analysis in HNSCC cells. Mutation, promoter hypermethylation, and copy number alteration of any gene were not significantly associated with increased pSTAT3(Y705) protein expression.ConclusionsThese cumulative results suggest that unbiased approaches may be useful in identifying the molecular underpinnings of oncogenic signaling, including STAT3 activation, in HNSCC. Larger datasets will likely be necessary to elucidate signaling consequences of infrequent alterations

    Biochemical Properties of a Decoy Oligodeoxynucleotide Inhibitor of STAT3 Transcription Factor.

    Get PDF
    Cyclic STAT3 decoy (CS3D) is a second-generation, double-stranded oligodeoxynucleotide (ODN) that mimics a genomic response element for signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor. CS3D competitively inhibits STAT3 binding to target gene promoters, resulting in decreased expression of proteins that promote cellular proliferation and survival. Previous studies have demonstrated antitumor activity of CS3D in preclinical models of solid tumors. However, prior to entering human clinical trials, the efficiency of generating the CS3D molecule and its stability in biological fluids should be determined. CS3D is synthesized as a single-stranded ODN and must have its free ends ligated to generate the final cyclic form. In this study, we report a ligation efficiency of nearly 95 percent. The ligated CS3D demonstrated a half-life of 7.9 h in human serum, indicating adequate stability for intravenous delivery. These results provide requisite biochemical characterization of CS3D that will inform upcoming clinical trials

    Quantifying metabolic heterogeneity in head and neck tumors in real time: 2-DG uptake is highest in hypoxic tumor regions

    Get PDF
    Purpose: Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC) xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor. Experimental Design: Cal33 cells were grown as xenograft tumors (n = 16) in nude mice after identification of this cell line's metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG) concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of 18F-fluorodeoxyglucose (18F-FDG) uptake in clinical PET scans. Results: IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001). IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous 18F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors. Conclusion: Hypoxia is associated with increased intratumoral metabolic heterogeneity. 18F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis. © 2014 Nakajima et al

    The non-coding landscape of head and neck squamous cell carcinoma.

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease marked by frequent recurrence and metastasis and stagnant survival rates. To enhance molecular knowledge of HNSCC and define a non-coding RNA (ncRNA) landscape of the disease, we profiled the transcriptome-wide dysregulation of long non-coding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA) using RNA-sequencing data from 422 HNSCC patients in The Cancer Genome Atlas (TCGA). 307 non-coding transcripts differentially expressed in HNSCC were significantly correlated with patient survival, and associated with mutations in TP53, CDKN2A, CASP8, PRDM9, and FBXW7 and copy number variations in chromosomes 3, 5, 7, and 18. We also observed widespread ncRNA correlation to concurrent TP53 and chromosome 3p loss, a compelling predictor of poor prognosis in HNSCCs. Three selected ncRNAs were additionally associated with tumor stage, HPV status, and other clinical characteristics, and modulation of their expression in vitro reveals differential regulation of genes involved in epithelial-mesenchymal transition and apoptotic response. This comprehensive characterization of the HNSCC non-coding transcriptome introduces new layers of understanding for the disease, and nominates a novel panel of transcripts with potential utility as prognostic markers or therapeutic targets

    Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer

    Get PDF
    The underpinnings of STAT3 hyperphosphorylation resulting in enhanced signaling and cancer progression are incompletely understood. Loss-of-function mutations of enzymes that dephosphorylate STAT3, such as receptor protein tyrosine phosphatases, which are encoded by the PTPR gene family, represent a plausible mechanism of STAT3 hyperactivation. We analyzed whole exome sequencing (n = 374) and reverse-phase protein array data (n = 212) from head and neck squamous cell carcinomas (HNSCCs). PTPR mutations are most common and are associated with significantly increased phospho-STAT3 expression in HNSCC tumors. Expression of receptor-like protein tyrosine phosphatase T (PTPRT) mutant proteins induces STAT3 phosphorylation and cell survival, consistent with a “driver” phenotype. Computational modeling reveals functional consequences of PTPRT mutations on phospho-tyrosine–substrate interactions. A high mutation rate (30%) of PTPRs was found in HNSCC and 14 other solid tumors, suggesting that PTPR alterations, in particular PTPRT mutations, may define a subset of patients where STAT3 pathway inhibitors hold particular promise as effective therapeutic agents.Fil: Lui, Vivian Wai Yan. University of Pittsburgh; Estados UnidosFil: Peyser, Noah D.. University of Pittsburgh; Estados UnidosFil: Ng, Patrick Kwok-Shing. University Of Texas Md Anderson Cancer Center;Fil: Hritz, Jozef. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados Unidos. Masaryk University; República ChecaFil: Zeng, Yan. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Lu, Yiling. University Of Texas Md Anderson Cancer Center;Fil: Li, Hua. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Wang, Lin. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Gilbert, Breean R.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: General, Ignacio. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Bahar, Ivet. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Ju, Zhenlin. University Of Texas Md Anderson Cancer Center;Fil: Wang, Zhenghe. Case Western Reserve University; Estados UnidosFil: Pendleton, Kelsey P.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Xiao, Xiao. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Du, Yu. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Vries, John K.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Hammerman, Peter S.. Harvard Medical School; Estados UnidosFil: Garraway, Levi A.. Harvard Medical School; Estados UnidosFil: Mills, Gordon B.. University Of Texas Md Anderson Cancer Center;Fil: Johnson, Daniel E.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Grandis, Jennifer R.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unido
    corecore